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Recap Overview Determinants Eigenvalues and Eigenvectors Summary

Quick recap

So far we reviewed:
• Vectors, matrices
• Operations on vectors and matrices: scalar multiplication, addition, dot

product, matrix multiplication
• Matrices as operators (linear functions / transformations)
• Linearity and linear combinations
• Solving systems of linear equations, elimination
• Finding matrix inverse
• Linear regression
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Today’s plan

• Determinant
• Eigenvalues and eigenvectors
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Determinant

• The determinant of a square matrix is a number that provides a lot of
information about the matrix

– Whether the matrix has an inverse or not
– Calculating eigenvalues and eigenvectors
– Solving systems of linear equations
– Determining the (signed) ‘change of volume’ caused by the linear

transformation defined by the matrix
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Calculating the determinant

• The determinant of a 2x2 matrix is∣∣∣∣a b

c d

∣∣∣∣ = ad− cb

• The determinant of larger matrices are defined recursively
– Choose a row or column
– The determinant is the sum of the each element in the row (or column)

multiplied by its cofactor
– The cofactor of an element aij is the determinant of ‘sub-matrix’ (or minor)

multiplied by −1i+j

– The minor of aij is the matrix obtained by removing row i and column j from
the original matrix
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Determinant
example geometric interpretation (1)

• A =

[
0 −1

1 0

]
• det(A) = ?
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Determinant
example geometric interpretation (2)

• A =

[
0 −1

2 0

]
• det(A) = ?
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Determinant
example geometric interpretation (3)

• A =

[
−2 0

0 1

]
• det(A) = ?
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Determinant
example geometric interpretation (3)

• A =

[
cos 120
sin 120

]
×

[
cos 120 sin 120

]
=

[
0.25 −0.43
−0.43 0.75

]
• det(A) = ?
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Some properties of determinants

• det(I) = 1

• If two columns or rows are the same, the determinant is 0
• If we multiply a row A with a scalar c, determinant becomes c detA

•

∣∣∣∣a+ a ′ b+ b ′

c d

∣∣∣∣ = ∣∣∣∣a b

c d

∣∣∣∣+ ∣∣∣∣a ′ b ′

c d

∣∣∣∣
• If we exchange two rows of A, determinant becomes − detA

• Elementary row operations do not change the determinant (except
permutations)

• det(AB) = det(A) det(B)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 9 / 18

Recap Overview Determinants Eigenvalues and Eigenvectors Summary

Eigenvalues and eigenvectors

• We can view any linear transformation as a combination of scaling and
rotation (and reflection)

• The linear transformation defined by a matrix does not change the directions
of some vectors, vectors in these directions are called the eigenvectors

• The scaling factor in these directions is called eigenvalues
• More formally, if v is an eigenvector of A with corresponding eigenvalue λ,

Av = λv

• Independent eigenvectors of a symmetric are orthogonal
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Eigenvalues and eigenvectors
visualization

• We start with the vectors (black
arrows)

• The red lines trace the vector after
transformation with[

2.3660 −0.3660
−0.6340 2.6340

]
• In some directions, the vector is only

scaled
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−2

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 11 / 18



Recap Overview Determinants Eigenvalues and Eigenvectors Summary

Finding eigenvalues and eigenvectors

• We can start from the definition

Av = λv

• Rearranging,
Av− λv = 0

(A− λI)v = 0

• This means the matrix A− λI should be singular for non-zero v, and

det(A− λI) = 0

• Now we can first solve the equation for λ, and knowing λs we can find the
corresponding eigenvectors
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Finding eigenvalues and eigenvectors
an example

[
4 1

1 4

]
Solution:

λ1 = 5

λ2 = 3

v1 =

[
1

1

]
v2 =

[
1

−1

]
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Properties of eigenvalues and eigenvectors

• An n× n matrix A has n eigenvalues (which can be complex, or repeated)
• The sum of eigenvalues is the sum of the diagonal of A (the trace of A)
• The product of the eigenvalues is the determinant
• A and AT have the same eigenvalues
• For symmetric matrices, the eigenvectors can be chosen to be orthonormal
• If all eigenvalues of a symmetric are positive, it is called a positive definite

matrix. More formally, if A is positive definite, then xTAx is positive for any x

• If all eigenvalues of a symmetric are non-negative, it is called a positive
semi-definite matrix
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Diagonalization
(eigenvalue decomposition)

• An n× n with n independent eigenvalues can be diagonalized using
eigenvalues and eigenvectors

• We take the matrix S whose columns are the eigenvalues of A, and the
diagonal matrix Λ with eigenvalues of A, then

AS = SΛ

A = SΛS−1

S−1AS = Λ
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The geometry of eigenvalue decomposition

A

V

ΛV

UΛV
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Matrix powers and matrix inverse
• Matrix powers can be easily calculated with diagonalization

Ax = λx

AAx = λAx

A2x = λ2x

• In general,
A2 = SΛS−1SΛS−1

= SΛ2S−1

Ak = SΛkS−1

• Inverse is also easy to obtain after eigendecomposition

A−1 = SΛ−1S−1
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Summary / next

• We reviewed eigenvalues and eigenvectors
• Eigenvalues and eigenvectors have many practical applications from image

compression to clustering and dimensionality reduction
Next:

• SVD and pseudo inverse
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Further reading

Any of the linear algebra references provided earlier.
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