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Quick recap

S far we reviewed.
« Vectors, matrices
« Operations on vectors and matices: scalar multiplication, addition, dot
product, matrix multiplication

+ Linearity and linear combinations

+ Solving systems of linear equations, elimination
+ Finding matrix inverse

« Linear regression

Today’s plan

+ Determinant
- Eigenvalues and elgenvectors

Determinant

. p alotof
information about the matrix

~ Whether the matrix has an inverse or ot

~ Calculating cigenvalues and eigenvectors

- Solving systems of inear equations

~ Determining the (signed) ‘change of volume’ caused by the lincar
transformation defined by the matrix

Calculating the determinant

« The determinant of a 2x2 matrix is
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« The determinant of larger matrices are defined recursively

~ Choose a row or column

~ The determinant is the sum of the each lement n the row (or column)

Determinant

example geometric nterpretaton (1)
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mulipled by s aofcor « det(A) =2
- The coactor ofan element a i thedeterminant of ‘sub-matrx’ (o mirar)
muliplied by 111
- The minor o s s the matrix btained by removing row { and colum } from
the onginal matrix
Determinant Determinant

example geometri interprtation
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example geometrc inerpretation (3)

Determinant

example geometric nterpretation (3)
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+ det(AB) = det(A] det(B)

Some properties of determinants

o det() =1
« I two columns or rows are the same, the determinant is 0

Eigenvalues and eigenvectors

« We can view

rotation (and reffction)

the directions

« Thell defined by

, vectors in lled
« The scaling factor in these directions is called eigencalues
o v s an eigenvector of A

Av=nw

Eigenvalues and eigenvectors

visualizaton

« Westart with the vectors (black
artows)

« The red lines trace the vector after
transformation with
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« In some directions, the vector is only
scaled




Finding eigenvalues and eigenvectors Finding eigenvalues and eigenvectors
e
+ We can startfrom the definition
Av=iv [4 n
1)
+ Rearranging, Sone
_— Solutio
A
. he matrix A — Al should -zero v, and
dotlA—M) =0
+ Now we can firt solve the equation for , and knowwing As we can find the
cormesponding elgenvectors
Diagonalization

Properties of eigenvalues and eigenvectors

« Anmx n matrix A has n eigenvalues (which can be complex, or repeated)
+ The sum of eigenvaluesisthe sum of the diagonal of A (the fraceof A)

« The product of the eigenvalues is the determinant

+ Aand AT have the same cigenvalues

« Anm x n with n independent eigenvalues can be diagonalized using
eigenvalues and eigenvectors

* Witk the s o ol ar he g of A the
diagonal matrix A with eigenvalues of A, t

« Ifallc positive, it is called e defiite AS=SA
matrix. then TAX is pos A-SAST!
Ifall a e STAS=A
sem-dfinite matrix
The geometry of eigenvalue decomposition Matrix powers and matrix invers
+ Matrix powers can be easily calculated with diagonalization
N Ax=xx
AAx=2Ax
Alx = Ax
v v « In general,
\ LoV A? = SASTISAS
=sA’s !
% Ak sAks!
+ Inverse i also easy to obtain after eigendecomposition
ATl =sATlsT!

Summary / next

« We reviewed eigenvalues and eigenvectors
o have many " f
compression to clustering and dimensionality reduction
Next
+ SVD and pseudo inverse

Further reading

Any of the linear algebra references provided earler.
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