Linear algebra: solving systems of linear equations Statistical Natural Language Processing 1

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2024/2025

version: 59256fc @2024-11-12

Quick recap

So far we reviewed:

- *•* Vectors, matrices
- *•* Operations on vectors and matrices
- *•* Dot product
- *•* Matrix multiplication
- *•* Matrices as operators (linear functions / transformations)
- *•* Linearity and linear combinations

Today's lecture

- *•* More concepts from linear algebra
	- **–** Solving systems of linear equations
	- **–** Vector independence, matrix rank, vector spaces, span, basis
	- **–** Matrix inverse

Solving systems of linear equations an example

Solve

 $x_1 - x_2 = -1$ $2x_1 - x_2 = 1$

Solving systems of linear equations an example

Solve

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

• From the second equation: $x_2 = 2x_1 - 1$

Solving systems of linear equations an example

Solve

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

- From the second equation: $x_2 = 2x_1 1$
- *•* Substituting this in the second equation:

$$
x_1 - (2x_1 - 1) = -1
$$

$$
x_1 - 2x_1 + 1 = -1
$$

$$
x_1 = 2
$$

Solving systems of linear equations an example

Solve

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

- From the second equation: $x_2 = 2x_1 1$
- *•* Substituting this in the second equation:

$$
x_1 - (2x_1 - 1) = -1
$$

$$
x_1 - 2x_1 + 1 = -1
$$

$$
x_1 = 2
$$

• $x_2 = 2x_1 - 1$ $\Rightarrow x_2 = 3$

Solving systems of linear equations

Geometric interpretation (1)

• The solution is the intersection of the lines

Solving systems of linear equations

Geometric interpretation (2)

• The solution satisfies the linear combination of the column vectors

Solving systems of linear equations

Geometric interpretation (2)

• The solution satisfies the linear combination of the column vectors

Row elimination

$$
\begin{array}{rcl}\nx_1 - x_2 &=& -1 \\
2x_1 - x_2 &=& 1\n\end{array}
$$

$$
\iff \qquad \qquad \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

$$
\left[\begin{array}{cc|c}1&-1&-1\\2&-1&1\end{array}\right]
$$

Row elimination

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

$$
\iff \qquad \qquad \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

• We apply a set of *elementary row operations* to the *augmented matrix* to obtain an *upper triangle matrix*

$$
\left[\begin{array}{cc|c}1 & -1 & -1 \\ 2 & -1 & 1\end{array}\right]
$$

• Elementary row operations are

Row elimination

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

$$
\iff \qquad \qquad \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

$$
\left[\begin{array}{cc|c}1 & -1 & -1 \\ 2 & -1 & 1\end{array}\right]
$$

- *•* Elementary row operations are
	- **–** Multiply one of the rows with a non-zero scalar

Row elimination

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

$$
\iff \qquad \qquad \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

$$
\left[\begin{array}{cc|c}1 & -1 & -1 \\ 2 & -1 & 1\end{array}\right]
$$

- *•* Elementary row operations are
	- **–** Multiply one of the rows with a non-zero scalar
	- **–** Add (or subtract) a multiple of one row from another

Row elimination

$$
\begin{array}{rcl}\nx_1 & - & x_2 & = & -1 \\
2x_1 & - & x_2 & = & 1\n\end{array}
$$

$$
\iff \qquad \qquad \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

$$
\left[\begin{array}{cc|c}1 & -1 & -1 \\ 2 & -1 & 1\end{array}\right]
$$

- *•* Elementary row operations are
	- **–** Multiply one of the rows with a non-zero scalar
	- **–** Add (or subtract) a multiple of one row from another
	- **–** Swap two rows

Row elimination

an easy example

 $\begin{bmatrix} 1 & -1 \end{bmatrix}$ -1 2 -1 | 1]

> $\begin{bmatrix} 1 & -1 \end{bmatrix}$ -1 0 1 | 3

]

- *•* Add −2 *×* row 1 to row 2
- *•* This corresponds to:
- $x_1 x_2 = -1$ $x_2 = 3$

where we already see $x_2 = 3$

• *Back-substituting* this in the first equation gives the same answer $x_1 = 2$

A (slightly) difficult example

the system of equations in matrix form

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

A (slightly) difficult example

augmented matrix

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

A (slightly) difficult example

subtract 0.5 *×* R1 from R2

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 5 & 1 & -1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 10 \ 0 \ 0 \end{bmatrix}
$$

A (slightly) difficult example

subtract 0.5 *×* R1 from R3

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 5 & 0 & 1 & -1 \ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ 0 & 0 & -1 \end{bmatrix} = 1
$$

A (slightly) difficult example

new, equivalent set of equations

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 5 \ 0 & 1 & -1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 \ 0 & 1 & -1 \ 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ 0 & 0 & -1 \end{bmatrix} = 1
$$

$$
\begin{bmatrix} 2x_1 + 2x_2 + 4x_3 = 10 \ x_2 - x_3 = 0 \ -x_3 = -1 \end{bmatrix}
$$

A (slightly) difficult example

solution is now easy through back-substitution

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 5 \ 0 & 1 & -1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 \ 0 & 1 & -1 \ 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ 0 & 0 & -1 \end{bmatrix} = 1
$$

$$
2x_1 + 2x_2 + 4x_3 = 10 \ x_2 - x_3 = 0 \ x_3 = 1 \ -x_3 = -1 \ x_1 = 2
$$

A (slightly) difficult example

solution is now easy through back-substitution

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 \ 0 & 1 & -1 \ 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \ 0 & 1 & -1 \ -1 \end{bmatrix}
$$

$$
2x_1 + 2x_2 + 4x_3 = 10 \ x_2 - x_3 = 0 \ \Rightarrow \ x_2 = 1 \ -x_3 = -1 \ x_1 = 2
$$

Can we express the elementary row operations as matrix multiplications?

Solving systems of linear equations

The solution as a linear combination

Our earlier solution

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 2 \ 1 \ 1 \end{bmatrix}
$$

$$
2 \begin{bmatrix} 2 \ 1 \ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \ 2 \ 1 \end{bmatrix} + 1 \begin{bmatrix} 4 \ 1 \ 1 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix}
$$

means

The solution as a linear combination

Our earlier solution

$$
\begin{bmatrix} 2 & 2 & 4 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 10 \ 5 \ 4 \end{bmatrix} \Rightarrow \mathbf{x} = \begin{bmatrix} 2 \ 1 \ 1 \end{bmatrix}
$$

means

$$
2\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + 1\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} + 1\begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 4 \end{bmatrix}
$$

Can we solve this equation for any right-hand-side 3-vector?

An exercise

Solve,

Singular matrices and matrix rank

- *•* If the elimination results in one or more rows with all zeros, the matrix is said to be *singular*
- *•* This means effectively we have fewer equations than unknowns
- *•* If a square matrix is not singular, we can find a unique solution for any right-hand side
- *•* The systems of equations with a singular matrix results in either none or an infinite number of solutions
- *•* The number of columns (or rows) with a pivot is called the *rank* of the matrix
- *•* A non-singular square matrix is said to be full-rank

A two-dimensional example

• What is the rank of the following matrix?

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

A two-dimensional example

• What is the rank of the following matrix?

$$
\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

• Can we solve $Ax = b$

A two-dimensional example

• What is the rank of the following matrix?

$$
\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

• Can we solve $Ax = b$ **–** for b = \lceil 1 \mathcal{O}] ?

A two-dimensional example

• What is the rank of the following matrix?

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

• Can we solve $Ax = b$ **–** for b = \lceil 1 \mathcal{O}] ? **–** for b = $\overline{3}$ 6] ?

A two-dimensional example

Demonstration of no solution

$$
\begin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

\n
$$
\Rightarrow \begin{array}{ccc} 2x_1 + x_2 & = & 1 \\ 4x_1 + 2x_2 & = & 0 \end{array}
$$

• Lines are parallel to each other: no intersection, no solution

A two-dimensional example

Demonstration of no solution (another view)

- $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$] = \lceil 1 \mathcal{O}] \Rightarrow x₁ \lceil 1 2] $+ x_2$ $\lceil 2$ 4] = \lceil 1 \mathcal{O}]
- *•* All linear combinations of \lceil 1 2 $\Big]$ and $\Big[$ $\Big]$ 4] bound to be on the dotted line: no linear combination $\frac{1}{2}$ can produce $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ \mathcal{O}]

A two-dimensional example

Demonstration of infinite number of solutions

$$
\begin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} 3 \ 6 \end{bmatrix}
$$

\n
$$
\Rightarrow \begin{array}{ccc} 2x_1 + x_2 & = & 3 \\ 4x_1 + 2x_2 & = & 6 \end{array}
$$

• Lines are identical: any point on the line is a solution

A two-dimensional example

Demonstration of infinite number of solutions (another view)

$$
\begin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}
$$

$$
\Rightarrow x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}
$$

- There are many (x_1, x_2) combinations that satisfy the equation. An obvious one: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1]
- *•* More?

Inverse matrix

• If we have a single linear equation with a single unknown: $ax = b$, the solution is

$$
x = \frac{1}{a}b \quad \text{or} \quad x = a^{-1}b
$$

• We can use an analogous method with systems of linear equations

if $Ax = b$ then, $x = A^{-1}b$

- *•* Matrix inverse is only defined for square matrices (not all square matrices are invertible)
- When it exists, $A^{-1}A = AA^{-1} = I$
- *•* If a square matrix is invertible, a version of elimination can be used to find the inverse
	- **–** Create the augmented matrix [A|I]
	- **–** Use elementary row operations to obtain [I|B]
- $-$ If successful, **B** = **A**^{$−1$}

Matrix inversion example/exercise

Invert the following matrix:

Properties of matrix inverse

$$
\bullet \ \mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}^{-1}\mathbf{A}
$$

$$
\bullet \ (A^{-1})^{-1} = A
$$

$$
(AB)^{-1} = B^{-1}A^{-1}
$$

$$
\bullet \ (\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}
$$

LU decomposition

• A square matrix can be factored into two matrices: a lower-triangular matrix L, and an upper-triangular matrix U

$A = LU$

• Sometimes a permutation of the original matrix is needed

$PA = LU$

- *•* LU decomposition can easily be computed from the results of the row elimination:
	- **–** Elimination gives us U
	- **–** If we keep track of elimination steps, the inverse of the transformations gives L
- *•* LU decomposition useful for many tasks (other than solving systems of linear equations, and finding the inverse of a matrix)

Independence

- A set of vectors $v_1, \ldots v_d$ are *dependent* if any of the vectors can be obtained by a linear combination of others, otherwise they are *independent*
- *•* Alternatively, the column (and row) vectors of a matrix is dependent if $Ax = 0$ has a non-zero solution
- *•* Column (and row) vectors of a square matrix are independent if all columns have a non-zero pivot after row elimination
- *•* Column vectors of a square matrix are independent if and only if row vectors are also independent
- *•* Column vectors of a square matrix are independent if the matrix has full rank
- *•* Column vectors of a square matrix are independent if the matrix has an inverse

Span, basis, and vector spaces

• A set of d independent vectors are said to *span* a d-dimensional vector (sub)space. For example,

span the whole \mathbb{R}^3

- *•* Any set of vectors that span a vector space forms a *basis* for that vector space
- *•* Any vector in a vector space can be expressed as a linear combination of (any of) the basis for that vector space
- The equation $Ax = b$ has a solution if b is in the vector space spanned by columns of A

Four spaces of a matrix

Given a matrix A ,

- *• Columns space* of A is the space spanned by the columns of the matrix
- *• Row space* of A is the space spanned by the rows of the matrix
- *Null space* of **A** is the set of vectors **x** that satisfy $Ax = 0$ **–** All vectors in the null space of A are orthogonal to the rows of A
- *Null space of* A^T is the set of vectors x that satisfy $A^T x = 0$, or $x^T A = 0^T$, – All vectors in the null space of A^T are orthogonal to the columns of A
- *•* Given an n *×* m matrix with rank r
	- **–** Both column and row spaces are r dimensional
	- **–** The dimension of the null space of A is m − r
	- **−** The dimension of the null space of \mathbf{A}^T is $\mathfrak{n} \mathfrak{r}$

Four spaces of a matrix

A 2x2 example

Systems of equations with rectangular matrices wide matrices (more columns than rows)

- *•* This means n *×* m rectangular matrices with n < m,
- Note: the rank of such a matrix is always $\leq n$
- *•* Exercise: solve

$$
\left[\begin{array}{cc} 4 & 2 & 4 \\ 2 & 2 & 3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 10 \\ 4 \end{array}\right]
$$

Systems of equations with rectangular matrices wide matrices (more columns than rows)

- *•* This means n *×* m rectangular matrices with n < m,
- Note: the rank of such a matrix is always $\leq n$
- *•* Exercise: solve

$$
\left[\begin{array}{cc} 4 & 2 & 4 \\ 2 & 2 & 3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 10 \\ 4 \end{array}\right]
$$

 \overline{a}

- *•* In this case we have
	- **–** no solution if rank r < n (number of rows)
	- infinitely many solution if rank $r = n$

Systems of equations with rectangular matrices tall matrices (more rows than columns)

- $\bullet\,$ This means $\mathfrak n\times\mathfrak m$ rectangular matrices with $\mathfrak m<\mathfrak n,$
- $\bullet\,$ Note: the rank of such a matrix is always \leqslant $\ensuremath{\mathfrak{m}}\xspace$
- *•* Exercise: solve

$$
\left[\begin{array}{cc} 4 & 2 \\ 2 & 2 \\ 4 & 3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 10 \\ 4 \\ 4 \end{array}\right]
$$

Systems of equations with rectangular matrices tall matrices (more rows than columns)

- $\bullet\,$ This means $\frak{n}\times\frak{m}$ rectangular matrices with $\frak{m}<\frak{n},$
- Note: the rank of such a matrix is always $\leq m$
- *•* Exercise: solve

- *•* In this case we have
	- **–** a unique solution if the right-hand side is in the column space of the matrix
	- **–** no solution otherwise
- *•* We will work with this case more often

Visualizing non-solution

(1) equations as lines in 2-dimensional space

Visualizing non-solution

(2) column space and the vector b

Summary / next

- Solving sets of linear equations, $Ax = b$, is the focus of linear algebra
- *•* The number of solution depends on the shape and rank of the matrix A
- *•* We also touched on the concepts of
	- **–** independence of sets of vectors
	- **–** vector space
	- **–** basis
	- **–** span
	- **–** matrix rank, column/row/null space

Summary / next

- Solving sets of linear equations, $Ax = b$, is the focus of linear algebra
- *•* The number of solution depends on the shape and rank of the matrix A
- *•* We also touched on the concepts of
	- **–** independence of sets of vectors
	- **–** vector space
	- **–** basis
	- **–** span
	- **–** matrix rank, column/row/null space

Next:

• Linear regression: trying to solve the unsolvable set of equations

Any of the linear algebra references provided earlier.