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Solving systems of linear equations

Quick recap

So far we reviewed:
• Vectors, matrices
• Operations on vectors and matrices
• Dot product
• Matrix multiplication
• Matrices as operators (linear functions / transformations)
• Linearity and linear combinations
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Solving systems of linear equations

Today’s lecture

• More concepts from linear algebra
– Solving systems of linear equations
– Vector independence, matrix rank, vector spaces, span, basis
– Matrix inverse
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Solving systems of linear equations

Solving systems of linear equations
an example

Solve
x1 − x2 = −1

2x1 − x2 = 1

• From the second equation: x2 = 2x1 − 1

• Substituting this in the second equation:

x1 − (2x1 − 1) = −1

x1 − 2x1 + 1 = −1

x1 = 2

• x2 = 2x1 − 1 ⇒ x2 = 3
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Solving systems of linear equations

Solving systems of linear equations
Geometric interpretation (1)

• The solution is the
intersection of the lines
defined by the equations −5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x1
−
x2

=
−1

2x
1
−
x 2

=
1

x1

x2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 4 / 30



Solving systems of linear equations

Solving systems of linear equations
Geometric interpretation (2)

• The solution satisfies the
linear combination of the
column vectors

2

[
2

1

]
+ 3

[
−1

−1

]
=

[
1

−1

]
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Solving systems of linear equations

Row elimination
x1 − x2 = −1

2x1 − x2 = 1
⇐⇒ [

1 −1

2 −1

] [
x1
x2

]
=

[
−1

1

]
• We apply a set of elementary row operations to the augmented matrix to obtain an
upper triangle matrix [

1 −1 −1

2 −1 1

]

• Elementary row operations are

– Multiply one of the rows with a non-zero scalar
– Add (or subtract) a multiple of one row from another
– Swap two rows
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Solving systems of linear equations

Row elimination
an easy example

[
1 −1 −1

2 −1 1

]

• Add −2× row 1 to row 2 [
1 −1 −1

0 1 3

]
• This corresponds to:

x1 − x2 = −1

x2 = 3

where we already see x2 = 3

• Back-substituting this in the first equation gives the same answer x1 = 2
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Solving systems of linear equations

A (slightly) difficult example
the system of equations in matrix form

 2 2 4

1 2 1

1 1 1

 x1
x2
x3

 =

 10

5

4



 2 2 4 10

1 2 1 5

1 1 1 4

  2 2 4 10

0 1 −1 0

1 1 1 4

  2 2 4 10

0 1 −1 0

0 0 −1 −1


2x1 + 2x2 + 4x3 = 10

x2 − x3 = 0

− x3 = −1

⇒ x3 = 1

x2 = 1

x1 = 2

Can we express the elementary row operations as matrix multiplications?
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A (slightly) difficult example
augmented matrix
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Solving systems of linear equations

A (slightly) difficult example
subtract 0.5× R1 from R2

 2 2 4

1 2 1

1 1 1

 x1
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x3

 =

 10

5

4
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2x1 + 2x2 + 4x3 = 10

x2 − x3 = 0

− x3 = −1

⇒ x3 = 1

x2 = 1

x1 = 2

Can we express the elementary row operations as matrix multiplications?
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Solving systems of linear equations

A (slightly) difficult example
subtract 0.5× R1 from R3
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Solving systems of linear equations

A (slightly) difficult example
new, equivalent set of equations
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Solving systems of linear equations

A (slightly) difficult example
solution is now easy through back-substitution
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Solving systems of linear equations

Visualizing solution in 3D

−10

−5

0

5

10−10

−5

0

5

10

−20

0

20

x
y

• Each equation defines a plane

• Intersection of two planes is a line in
R3

• Intersection of three planes is a point

Question: Is this always true?
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Solving systems of linear equations

The solution as a linear combination
Our earlier solution 2 2 4

1 2 1

1 1 1

 x1
x2
x3

 =

 10

5

4

 ⇒ x =

 2

1

1


means

2

 2

1

1

+ 1

 2

2

1

+ 1

 4

1

1

 =

 10

5

4



Can we solve this equation for any right-hand-side 3-vector?
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Solving systems of linear equations

An exercise
Solve,  4 2 4

2 2 3

2 1 2

 x1
x2
x3

 =

 10

4

4
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Solving systems of linear equations

Singular matrices and matrix rank

• If the elimination results in one or more rows with all zeros, the matrix is said
to be singular

• This means – effectively – we have fewer equations than unknowns
• If a square matrix is not singular, we can find a unique solution for any

right-hand side
• The systems of equations with a singular matrix results in either none or an

infinite number of solutions
• The number of columns (or rows) with a pivot is called the rank of the matrix
• A non-singular square matrix is said to be full-rank
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Solving systems of linear equations

A two-dimensional example

• What is the rank of the following matrix?

A =

[
1 2

2 4

]

• Can we solve Ax = b

– for b =

[
1

0

]
?

– for b =

[
3

6

]
?
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Solving systems of linear equations

A two-dimensional example
Demonstration of no solution

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x
1 + 2x

2 = 1
2x

1 + 4x
2 = 0

[
1 2

2 4

] [
x1
x2

]
=

[
1

0

]
⇒ 2x1 + x2 = 1

4x1 + 2x2 = 0

• Lines are parallel to each other: no
intersection, no solution
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Solving systems of linear equations

A two-dimensional example
Demonstration of no solution (another view)

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

(1,2)

(2,4)

(1,0)

[
1 2

2 4

] [
x1
x2

]
=

[
1

0

]
⇒ x1

[
1

2

]
+ x2

[
2

4

]
=

[
1

0

]

• All linear combinations of[
1

2

]
and

[
2

4

]
bound to be on the

dotted line: no linear combination
can produce

[
1

0

]
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Solving systems of linear equations

A two-dimensional example
Demonstration of infinite number of solutions

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x
1 + 2x

2 = 3
2x

1 + 4x
2 = 6

[
1 2

2 4

] [
x1
x2

]
=

[
3

6

]
⇒ 2x1 + x2 = 3

4x1 + 2x2 = 6

• Lines are identical: any point on the
line is a solution
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Solving systems of linear equations

A two-dimensional example
Demonstration of infinite number of solutions (another view)

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

(3,6)

(1,2)

(2,4)

[
1 2

2 4

] [
x1
x2

]
=

[
3

6

]
⇒ x1

[
1

2

]
+ x2

[
2

4

]
=

[
3

6

]

• There are many (x1, x2)
combinations that satisfy the

equation. An obvious one:
[
1

1

]
• More?
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Solving systems of linear equations

Inverse matrix
• If we have a single linear equation with a single unknown: ax = b, the

solution is
x =

1

a
b or x = a−1b

• We can use an analogous method with systems of linear equations

if Ax = b then, x = A−1b

• Matrix inverse is only defined for square matrices ( not all square matrices are
invertible)

• When it exists, A−1A = AA−1 = I

• If a square matrix is invertible, a version of elimination can be used to find the
inverse

– Create the augmented matrix [A|I]
– Use elementary row operations to obtain [I|B]
– If successful, B = A−1
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Solving systems of linear equations

Matrix inversion example/exercise
Invert the following matrix: 

3 1 2 4

1 0 1 1

2 1 3 0

4 2 0 5
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Solving systems of linear equations

Properties of matrix inverse

• A−1A = I = A−1A

• (A−1)−1 = A

• (AB)−1 = B−1A−1

• (AT )−1 = (A−1)T

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 20 / 30



Solving systems of linear equations

LU decomposition
• A square matrix can be factored into two matrices: a lower-triangular matrix
L, and an upper-triangular matrix U

A = LU

• Sometimes a permutation of the original matrix is needed

PA = LU

• LU decomposition can easily be computed from the results of the row
elimination:

– Elimination gives us U
– If we keep track of elimination steps, the inverse of the transformations gives L

• LU decomposition useful for many tasks (other than solving systems of linear
equations, and finding the inverse of a matrix)
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Solving systems of linear equations

Independence

• A set of vectors v1, . . . vd are dependent if any of the vectors can be obtained by
a linear combination of others, otherwise they are independent

• Alternatively, the column (and row) vectors of a matrix is dependent if
Ax = 0 has a non-zero solution

• Column (and row) vectors of a square matrix are independent if all columns
have a non-zero pivot after row elimination

• Column vectors of a square matrix are independent if and only if row vectors
are also independent

• Column vectors of a square matrix are independent if the matrix has full rank
• Column vectors of a square matrix are independent if the matrix has an

inverse
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Solving systems of linear equations

Span, basis, and vector spaces

• A set of d independent vectors are said to span a d-dimensional vector
(sub)space. For example, 10

0

01
0

00
1


span the whole R3

• Any set of vectors that span a vector space forms a basis for that vector space
• Any vector in a vector space can be expressed as a linear combination of (any

of) the basis for that vector space
• The equation Ax = b has a solution if b is in the vector space spanned by

columns of A
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Solving systems of linear equations

Four spaces of a matrix

Given a matrix A,
• Columns space of A is the space spanned by the columns of the matrix
• Row space of A is the space spanned by the rows of the matrix
• Null space of A is the set of vectors x that satisfy Ax = 0

– All vectors in the null space of A are orthogonal to the rows of A
• Null space of AT is the set of vectors x that satisfy ATx = 0, or xTA = 0T ,

– All vectors in the null space of AT are orthogonal to the columns of A
• Given an n×m matrix with rank r

– Both column and row spaces are r dimensional
– The dimension of the null space of A is m− r

– The dimension of the null space of AT is n− r

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 24 / 30



Solving systems of linear equations

Four spaces of a matrix
A 2x2 example

A =

[
1 3

−2 −6

]

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

(1,3)

(-2,-6)

Row space

Null space of A

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

(1,-2)

(3,-6)

Column space

Null space of AT
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Solving systems of linear equations

Systems of equations with rectangular matrices
wide matrices (more columns than rows)

• This means n×m rectangular matrices with n < m,
• Note: the rank of such a matrix is always ⩽ n

• Exercise: solve [
4 2 4

2 2 3

] x1
x2
x3

 =

[
10

4

]

• In this case we have
– no solution if rank r < n (number of rows)
– infinitely many solution if rank r = n
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Solving systems of linear equations

Systems of equations with rectangular matrices
tall matrices (more rows than columns)

• This means n×m rectangular matrices with m < n,
• Note: the rank of such a matrix is always ⩽ m

• Exercise: solve  4 2

2 2

4 3

[
x1
x2

]
=

 10

4

4



• In this case we have
– a unique solution if the right-hand side is in the column space of the matrix
– no solution otherwise

• We will work with this case more often
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Solving systems of linear equations

Visualizing non-solution
(1) equations as lines in 2-dimensional space

−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

4x
1
+
2x

2
=
10

2x
1 +

2x
2 =

4

4x
1 +

3x
2 =

4  4 2

2 2

4 3

[
x1
x2

]
=

 10

4

4
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Solving systems of linear equations

Visualizing non-solution
(2) column space and the vector b

0

5
0

5

−5

0

5

x
y

• The vectors u =

 4

2

4

 and

v =

 2

2

3

 span a 2-dimensional

subspace of R3

• The vector w

 10

4

4

 (scaled to half

in the figure) is not on the plane
• We express w as a linear

combination of of u and w
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Solving systems of linear equations

Summary / next

• Solving sets of linear equations, Ax = b, is the focus of linear algebra
• The number of solution depends on the shape and rank of the matrix A

• We also touched on the concepts of
– independence of sets of vectors
– vector space
– basis
– span
– matrix rank, column/row/null space

Next:
• Linear regression: trying to solve the unsolvable set of equations
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Further reading

Any of the linear algebra references provided earlier.
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