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Information theory

« Information theory is concerned with measurement, storage and transmission
mation

+ Ithas its roots in communication theory, but is applied to many different

fields NLP.
+ We will revisit some of the major concepts

Noisy channel model

Coding example
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« This simple model has many applications in NLP, including in speech

recognition and machine translation
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Self information / surprisal

Selfnformation (o surprisal) associated with an event x is
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Why log?

Entropy

Entropy is a measure of the uncertainty of a random variable:
« Reminder: logarithms transform exponential relations to linear elations
HIX) =~} Plx)logP(x)
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« Entropy is the lower bound on the best average code length, given the
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- Working with logarithms s more numerically stable

distribution P that generates the data
« Entropy s average surprisal: H(X) = E[-log P(x]]

« It generalizes to continuous distributions as well (replace sum with integral)

Entropy is about a distribution, while surprisal is about individual events

Example: entropy of a Bernoulls distribution

Entropy: demonstration
ncressing number of outcomes incresses enropy

1
08
Z 06
2
£ o4
02
0 =-log
o 02 o4 06 08 1 H=—log]
PX=1)
Entropy: demonstration Entropy: demonstration
incecsing mumber of otcomes incrases cntopy ncreaing mber ofoutcomes incrcesentropy
Togyd =3 loms 3 =1 He—Ylogs 1= Viogs 2= Liogs 3 — Llogs 1 =2
log 3 — Ylogz § Hloga — o2~ loga§ — losa §




Entropy: demonstration

the distribstion maters
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Pointwise mutual information Mutual information
f tion (PMI) between defined al two random variables
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« Reminder: P(x,y) = P(xJP(y) if two events are independent PMI

more than they would oceur by chance

— ifevents cooceur less than they would occur by chance.

« Pointyise mutual information is symmetric PMI(X, Y) = PMI(Y, X)

« PMlis ofte measure of association (e.g, between words) in
computationalcorpus linguistics

« Mls the average (expected value of) PMI
« PMIis defined on events, Ml is defined on distributions
+ Note the similarity with the covariance (or correlation)
e e e s
- also defined for
e e e oL

Conditional entropy

Entropy, mutual information and conditional entropy
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Cross entropy
Cross entropy measures entropy of a distribution P, under anther distrbution Q.

HP,Q) =~} Plx]logQlx)

« Itoften arises in the context of approximation:
if we approximate the true distribution P with Q
« Itisal than H(P): itis the Pt d
P coded using Q

ML for
Note: the notation H(X, Y) i also used for oiut entropy.

Perplexity

Perplexity is the exponential version of (cross) entropy:

PP(X) = 2HX)

+ Perplexity ‘undoes’ the logarithimic scaling

« Perplexity casier to interpret in some contexts

« Especially for language models,its interpretation is the average ‘branching
factor’

Predict the next word: {S) The perplexity of a random variable {/S)

KL-divergence / relative entropy
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« Dyt measures the amount of extra bits needed when Q is used instead of P
« D (PIQ) = HIP,Q) —H(P)

« Used for measuring the difference between two distributions

+ Note: itis not symmetric (not a distance meastre)

Continuious random variables and differential entropy

o variables, ver all »
but we can integrate over the ranges of outcomes

« Information entropy (and all relevant meastires) generalizes to the
continuous distributions
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« The entropy of continuous variables is called difeential entropy
+ Differential entropy i typically measures n nafs




Short divergence: distance measure (again)

Adistance function, or a metric, satisfies:
«dixy) >0
- dlxy) = dly,x)

~dixy)=0 & x=y

« dlxy) < dlx,z) £ dizy)

We will encounter measures/metrics frequently in this course.

Summary

+ Information theory has many applications in NLP and ML
+ We reviewed a number of important concepts from the information theory
Self information Entropy
= Pointuvise MI - Mutualinformation

- Cross entropy - Kl-divergence

Next
+ Statistical estimation and regression (again)

Further reading

« The original article from Shannon (1948), which started the field, is also quite
easy toread

+ MacKay (2003) covers most of the topics discussed, in a way quite relevant to
machine learning, The complete book is available freely online (see the link
below)
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http://www.inference.phy.cam.ac.uk/itprnn/book.html
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