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Today’s lecture Linear algebra

+ Some concepts from linear algebra
- Vctors
~ Dot product
Matrices

Linearalgebra i the field of mathematics that studies eectors and matrices.
« A vector s an ordered sequence of numbers

v=(617)

« A matrix s a rectangular arrangement of numbers
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« Awellda algebra is sok equations
2+ o= 6 - 2 1] W] _[6
X+ e = 17 14X L) =7

Why study linear algebra?

Consider an application counting words in multiple documents

the

and

Why study linear algebra?

« Insights from linear algebra are helpful in understanding many NLP methods

to_in + In machine I pi tput,
06 91 8 45 vectors or matrices (or tensors)
6 8 91 6 + It makes notation concise and managesble
o 4l 47 3 oI vectors and
matrices explicily
+ In programming, vector-matrix operations correspond to loops
You should already be seeing vectors and matrices here. SRecioized CERE, EU:)
Vectors eometric interpretation of vectors
+ Vectors are objcts with a magnitude and a ]
direction + Geometricaly vectors are
sent vectors with an ordered lstof represented with arrowws from the 0.3
Torem originin the Euclidean space
+ The number n (the number of clements or é « The endpoint of the vector
entries of the vector) is its dimension v = [v1,v2) correspond to the tist
- Worton cal . i el s e e o
. 'Zrl;vﬁﬂi\r of n real numbers is said to be in [2’ * These generally make sense for two
e . or three-dimensional spaces
+ Typical notation for vectors: « The intuitions often (!) generalize to i
S, H higher dimensional spaces
pecial vectors Multiplying a vector with a scalar
+ The zero vector, 0 is the vector whose all entries are 0
+ The vector o ll 15, T, is also often interesting
“A dard wnit ectors
SSietzionatandaiunit Sces) « Foravector v = (vy.v;) and a scalar ho=(1.2)
17 707 [0] [0 o i
of 1 fof o av = (avy, avz)
HINESEB + multplying with a salar ‘scales’ the  ——{——————
vector o
N unit vectors form the standard basis for + We can use the notation a1 fora
n-dimensional (vector) space B
« I some textbooks, standard unit vectors of two (and three) dimensions are
represented by i and k
+ In ML they are related o one-of representation: we represent categorical
redictors (v with n values as unit vectors

Vector addition and subtraction

For vectors v = (v1,v2) and w = (11, w2)

Svu= e tw)
1.2+21)=33)

Cvousv(u)
1,2-21=(=1,1)

+ Forany vectorv,v+0=v

Properties of vector operations

« Vector addition and scalar multiplication is commutative:
whv=viu
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properties
alu+ vl = au+av

fatblv=aviby



https://snlp1-2024.github.io
https://github.com/snlp1-2024/snlp1/

Linearity and linear functions Linear combinations of standard unit vectors

* Al 1) fancto (ot mapping)Glows

- f(av) = af(y) (homogeneity)
= v+ ) — ) + 1) (additivity) « Any n-vector can be written as a
- combined together: f(av-+ bu) = af(v) + bilv] linear combination of standard unit
« A combination of vectors as in vectors. Example:
@V azv o anve 21,17 _3[0]
3] =2o] 731

is called a linear combination (another vector)

Question: Is f(x) = ax + b linear? form a basis for "

Dot (inner) product Properties of dot product

« Dot product is an operation between two vectors with same dimensions

VS U U Uy « Commutativityu-v=v.u

o @ e P D « Distributivity with vector addition w- (v +v) = w-v +u-u
« Associavity with scalar mudtiplication (a) - (bv) = bl -v)

0w
4] 3 4] [-3] ol = m# of I + Note that dot product s not assaciative, since the result of the dot product is
X O 3 4 v v b
B
o T A
Geometric interpretation of the dot product Dot product with unit vectors

T i
« The dot product of two vectors gives
the (orthogonal) projection of one of
the vectors to the line defined by the R P B
i wv=1 ww=07  wwv=0 07 =

« The dot product is larger if the vectors point to the similar directions.

Vector norms L2 norm
+ Euclidean norm, or L2 (or L) norm
is the most commonly sed norm ¥
« Forv=(vi,v2....val,
« The norm of a vectoris a indication ofis size (magnitude) 3.3
+ The norm of a vector s the distance from tstilt s tip 2= W
+ Norms are related to distance measures it
+ Vector norms y impor
learning techniques + For example,
13.3)2 = V3 = VIE i
+ L2 norm s the default, we often skip
the subscript [v]
Euclidean distance Cauchy-Schwarz inequality
+ Euclidean distance between two
vectors is the L2 norm of ther
difference y
D(u,v) = u—vi] = /(=612 + (-1 u Vi < vl
o B A + Inwords: the productof the norms of two vectors i greater than or equal to
- syt vl = ] 1 absolute value of their dot product
 nonnega
~ andobeyshe e gty
Dlu,v) < D{uw) | D
foranyw
Cosine similarity L1 norm

« The cosine of the angle between two « Another norm we will often

vectors encounter isthe L1 norm
om0 = o vl =l +
vl - Tl
lled 113,31l =Bl +Bl =6
 Unlike dot product the cosine o + Lt norm i reated to Manhattan

ol
similarity is not sensitive to the. Y T
magnitudes of the vectors
+ The cosine similarity is bounded in
range [T, +1]




Lp norm

In general, Ly norm, is defined as

We will only work with than L1 and L2 norms, but you may also see Lo and L
norms in related literature

Matrices
an . a i
a2 A am
an) Gn2 Gna o Gnm

+ We can think of matrices as collection of row or column vectors.
« A matrix with n rows and m columns is in "™
. linear algebr

than 2-D objects
« A tensor can be thought of a generalization of vectors and matrices to multiple
dimensions

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

HE N R

Matrix addition and subtraction

dded to from)

[+ -6

+ Matrix addition and subtraction are defined on matrices of the same
dimensions

Transpose of a matrix

Transpose of a n x m matrix s an m x n matrix whose rows are the columns of the
original matrix.
Transpose of a matrix A is denoted with AT

[}

A

Some special matrices

. ichall the principal diagonal
e )

100
010
001
+ Multiplying a vector and matrix with the identity matrix has no affect

Some special matrices
Diagonal matrices
+ Diagonal L Al but
nonzero entries can only be in the main diagonal
+ Example:
30 0 00
06 0 00
00100
oo 0 10
oo o 05

Some special matrices
Uppr/lower trangala matrice:

« Triangular matrices are common in many applications

pper
14 -]
03 0
00 5

+ An lower triangular matrix have all 05 above main diagonal. Example:
10 0
1 -2 0
8 71

Example:

Symmetric matric

ding in ML/NLP (e,

similarity or distance matrices)

+ A symmetric matrix A satisfies aij = aji, or A = A"
+ Example:
142
[, i

20 5

+ Symmetric matrices have some interesting properties (that we wil return
Iater)

Matrix-vector multiplication

« Anm x m matrix can be multiplied with a m-vector to yield a n-vector

 Eampie
A I
LRI o Tx0+0x1+1x0 0]
e e P ———

(of rows of the matrix and the

+ Another: the result is alinear combination of the columns of the matrix (with.
the entries in the vector as coefficients)

ox [+ 1 [i] +ox[f]

Matrix multiplication as linear transformation

« Multiplying a vector with a matrix transforms the vector
- The result is another vector (possibly in a different vector space)
be expressed

. P amatrix
(linear transformations)

‘Transformation examples

+ Identity transformation maps a vector to itself

T R




Transformation examples

« Another simple transformation is to permute (re-arrange) the elements
(rows) of the vector
« For example:

Transformation examples

sretch aln the x avis

0001 [u] [
01 00| fe_|w
001 0 * || T [
1000 [u [u
Transformation examples Transformations by rectangular matrices
+ Multplying  vector with (compatible) rectangular matrix results n a vector
with different dimensionality
« Example & — R?
[u»« 7~mB] w2 ﬁ ! “] 3 N - [‘]
01 o
=2, o
][] BmraPet
x « Example B — B
ol [ 1
020" o 12
T 1
Dot product as matrix multiplication Outer product

In machine learning (and many other disciplines, we treat an n-vector as n x |
matrix

Then, the dof podct of two vectors is

For example, u = (2.2) and v = (2,-2),

[ 2]X[f1] —2x2+2x -2=4

« Thisisa 1 x 1 matrix, but matrices and vectors with single entries are often
treated as scalars

Question: What i the transformation performed by dot product?

‘The outer product of two column vectors is defined as

"

[x02a-[127

Note:
« The resultis a matrix
« The vectors do not have to be the same length

Matrix multiplication

« if Aisan x kmatrix, and B isa k x m matrix, their product Cisan x m
matrix

« Elements of C, ci , are defined as

Matrix multiplication
an an e by biz b
an an ..oan ba ba . bam
X
ant @z o ok bu bz o b

=) aiuby €y = anbiy + aizbyy + ... awbiy
=]
+ Note: ¢, i the dot product o the " row of A and the " column of B on e om
Cnt Snz we. Cnm
Properties of matrix multiplication
+ Associativity
(ABIC = A(BC)
We have three matrices:
« Distributivity + A:a10 x 2 matrix
LBE=LBOME + B:a2x5matrix
(AUBICEAGLRG « €:a5x 10 matrix
* Multiplication by Identity + What s the dimensionality of ABC
AT + Does it matter if we perform the multiplication as
« Matrix multplication is not commutative AB  BA (in general) = @aBCor
tion and transpose - ABC)
(AB)T = BTAT

Alternative ways to think about matrix multiplication

If we have AB = C,
+ Column vectors of €, ¢ = Ab;
« Row vectors of C, ¢! = a/ B
+ Cisalso the sum of outer product of columns of A and rows of B

=Y anl

Matrix multiplication example

(b




Matrix-vector representation of a set of linear equations

The set of linear equations

can be written as:

today

Summary & next week

- Vecto
+ Dot product

« Next: solving systems of linear equations

, matrices

Further reading

« A classic reference book in the field is Strang (2009)

« Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with

a more practical /graphical orientation.
« Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks

that are frecly available.

+ Form more alternatives, se

Bttp://uwy . openculture. con/fxee-math-textbooks

« You may also find the MIT video lectures on introductory linear algebra at
L

hetps://w

. youtube . con/playlisiTlist

49CFST15CBIEF31D.

Further reading (cont.)



http://www.openculture.com/free-math-textbooks
https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D
http://linear.ups.edu/
https://www.math.ucdavis.edu/~linear/
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