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Some practical remarks
(recap)

• Course web page: https://snlp1-2024.github.io (public)
https://github.com/snlp1-2024/snlp1/ (private)

• If you haven’t done already, please fill in the questionnaire on Moodle

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 1 / 49

https://snlp1-2024.github.io
https://github.com/snlp1-2024/snlp1/


Practical matters Overview Vectors Dot product Matrices Summary

Today’s lecture

• Some concepts from linear algebra
– Vectors
– Dot product
– Matrices

This is only a high-level, informal introduction/refresher.
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Linear algebra
Linear algebra is the field of mathematics that studies vectors and matrices.

• A vector is an ordered sequence of numbers

v = (6, 17)

• A matrix is a rectangular arrangement of numbers

A =

[
2 1

1 4

]
• A well-known application of linear algebra is solving a set of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17
⇐⇒ [

2 1

1 4

]
×
[
x1
x2

]
=

[
6

17

]
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Why study linear algebra?

Consider an application counting words in a document

the and of to in …

(document1

121 106 91 83 43 …

)

document2 142 136 86 91 69 …
document3 107 94 41 47 33 …

… … … … … …
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Why study linear algebra?

Consider an application counting words in multiple documents

the and of to in …

(

document1 121 106 91 83 43 …

)

document2 142 136 86 91 69 …
document3 107 94 41 47 33 …

… … … … … …

You should already be seeing vectors and matrices here.
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Why study linear algebra?

• Insights from linear algebra are helpful in understanding many NLP methods
• In machine learning, we typically represent input, output, parameters as

vectors or matrices (or tensors)
• It makes notation concise and manageable
• In programming, many machine learning libraries make use of vectors and

matrices explicitly
• In programming, vector-matrix operations correspond to loops
• ‘Vectorized’ operations may run much faster on GPUs, and on modern CPUs
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Vectors
• Vectors are objects with a magnitude and a

direction
• We represent vectors with an ordered list of

numbers v = (v1, v2, . . . vn)

• The number n (the number of elements or
entries of the vector) is its dimension

• We often call an n dimensional vector as n-vector
• The vector of n real numbers is said to be in Rn

(v ∈ Rn)
• Typical notation for vectors:

v = v⃗ = (v1, v2, v3) = ⟨v1, v2, v3⟩ =

v1v2
v3



dir
ect
ion

ma
gn
itu
de
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Geometric interpretation of vectors

• Geometrically, vectors are
represented with arrows from the
origin in the Euclidean space

• The endpoint of the vector
v = (v1, v2) correspond to the
Cartesian coordinates defined by
v1, v2

• These generally make sense for two
or three-dimensional spaces

• The intuitions often (!) generalize to
higher dimensional spaces

(1, 1)

(1, 3)

(−1,−3)
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Some special vectors
• The zero vector, 0, is the vector whose all entries are 0
• The vector of all 1s, 1, is also often interesting
• A more interesting set of vectors is standard unit vectors (examples below are

4-dimensional standard unit vectors)
1

0

0

0



0

1

0

0



0

0

1

0



0

0

0

1


• n-dimensional standard unit vectors form the standard basis for
n-dimensional (vector) space

• In some textbooks, standard unit vectors of two (and three) dimensions are
represented by î, ĵ and k̂

• In ML they are related to one-hot representation: we represent categorical
predictors (variables) with n values as n-dimensional standard unit vectors
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Multiplying a vector with a scalar

• For a vector v = (v1, v2) and a scalar
a,

av = (av1,av2)

• multiplying with a scalar ‘scales’ the
vector

• We can use the notation a1 for a
vector whose all entries are a

2v

v = (1, 2)

−0.5v
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Vector addition and subtraction

For vectors v = (v1, v2) and u = (w1,w2)

• v+ u = (v1 +w1, v2 +w2)

(1, 2) + (2, 1) = (3, 3)

• v− u = v+ (−u)

(1, 2) − (2, 1) = (−1, 1)

• For any vector v, v+ 0 = v

v

u

v+ u

−u

v− u
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Properties of vector operations

• Vector addition and scalar multiplication is commutative

u+ v = v+ u

au = ua

• Scalar multiplication and vector addition also show the following distributive
properties

a(u+ v) = au+ av

(a+ b)v = av+ bv
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Linearity and linear functions

• A linear f() function (or mapping) follows
– f(av) = af(v) (homogeneity)
– f(v+ u) = f(v) + f(u) (additivity)
– combined together: f(av+ bu) = af(v) + bf(v)

• A combination of vectors as in

a1v1 + a2v2 + . . .+ anvn.

is called a linear combination (another vector)

Question: Is f(x) = ax+ b linear?
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Linear combinations of standard unit vectors

• Any n-vector can be written as a
linear combination of standard unit
vectors. Example:[

2

−3

]
= 2

[
1

0

]
− 3

[
0

1

]
• n-dimensional standard unit vectors

form a basis for Rn

(1, 0)
(0, 1)

(2, 0)

(0,−3)
(2,−3)
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Dot (inner) product

• Dot product is an operation between two vectors with same dimensions

u · v = u1v1 + u2v2 + . . .+ unvn

• Calculate the dot products for the following vectors

[
4

3

]
·
[
3

4

] [
4

−3

]
·
[
−3

4

] 12
3

 ·

−2

−4

−6

 12
3

 ·

24
6



1

0

0

0

 ·


0

1

0

0


• Note that dot product is larger when the vectors are ‘similar’
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Properties of dot product

• Commutativity u · v = v · u
• Distributivity with vector addition u · (v+ v) = u · v+ u · u
• Associativity with scalar multiplication (au) · (bv) = ab(u · v).
• Note that dot product is not associative, since the result of the dot product is

not a vector, but a scalar
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Geometric interpretation of the dot product

• The dot product of two vectors gives
the (orthogonal) projection of one of
the vectors to the line defined by the
other

v

u

v·u
∥u∥
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Dot product with unit vectors

v
u

u · v = 1

v

u

u · v = 0.7

v

u

u · v = 0

v

u

u · v = −0.7

v
u

u · v = −1

• The dot product is larger if the vectors point to the similar directions
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Vector norms

• The norm of a vector is an indication of its size (magnitude)
• The norm of a vector is the distance from its tail to its tip
• Norms are related to distance measures
• Vector norms are particularly important for understanding some machine

learning techniques
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L2 norm

• Euclidean norm, or L2 (or L2) norm
is the most commonly used norm

• For v = (v1, v2, . . . vn),

∥v∥2 =
√

v21 + v22 + . . . vn

=
√
v · v

• For example,

∥(3, 3)∥2 =
√

32 + 32 =
√
18

• L2 norm is the default, we often skip
the subscript ∥v∥

y

x

(3, 3)
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Euclidean distance

• Euclidean distance between two
vectors is the L2 norm of their
difference

D(u, v) = ∥u− v∥ =
√
(−6)2 + (−1)2

• Euclidean distance is a metric
– symmetric ∥v− u∥ = ∥u− v∥
– non-negative
– and obeys the triangle inequality

D(u, v) ⩽ D(u,w) +D(w, v)
for any w

y

x

u

v
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Cauchy–Schwarz inequality

|u · v| ⩽ ∥u∥∥v∥

• In words: the product of the norms of two vectors is greater than or equal to
absolute value of their dot product
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Cosine similarity

• The cosine of the angle between two
vectors

cos θ =
v · u

∥v∥ · ∥u∥

is called cosine similarity
• Unlike dot product, the cosine

similarity is not sensitive to the
magnitudes of the vectors

• The cosine similarity is bounded in
range [−1,+1]

v

u
θ

∥v∥ c
os θ
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L1 norm

• Another norm we will often
encounter is the L1 norm

∥v∥1 = |v1|+ |v2|

∥(3, 3)∥1 = |3|+ |3| = 6

• L1 norm is related to Manhattan
distance

y

x

(3, 3)
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LP norm

In general, LP norm, is defined as

∥v∥p =

(
n∑

i=1

|vi|
p

) 1
p

We will only work with than L1 and L2 norms, but you may also see L0 and L∞
norms in related literature

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 24 / 49



Practical matters Overview Vectors Dot product Matrices Summary

LP norm

In general, LP norm, is defined as

∥v∥p =

(
n∑

i=1

|vi|
p

) 1
p

We will only work with than L1 and L2 norms, but you may also see L0 and L∞
norms in related literature

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 24 / 49



Practical matters Overview Vectors Dot product Matrices Summary

Matrices

A =


a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m
...

...
... . . . ...

an,1 an,2 an,3 . . . an,m


• We can think of matrices as collection of row or column vectors
• A matrix with n rows and m columns is in Rn×m

• Most operations in linear algebra also generalize to more than 2-D objects
• A tensor can be thought of a generalization of vectors and matrices to multiple

dimensions
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Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

2

[
2 1

1 4

]
=

[
2× 2 2× 1

2× 1 2× 4

]
=

[
4 2

2 8

]
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Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element[
2 1

1 4

]
+

[
0 1

1 0

]
=

[
2 2

2 4

]
Note:

• Matrix addition and subtraction are defined on matrices of the same
dimensions
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Transpose of a matrix

Transpose of a n×m matrix is an m×n matrix whose rows are the columns of the
original matrix.
Transpose of a matrix A is denoted with AT .

If A =

a b

c d

e f

, AT =

[
a c e

b d f

]
.
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Some special matrices
Identity matrix

• A square matrix in which all the elements of the principal diagonal are one
and all other elements are zero is called identity matrix (I)1 0 0

0 1 0

0 0 1


• Multiplying a vector and matrix with the identity matrix has no affect
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Some special matrices
Diagonal matrices

• Diagonal matrices are similar to I. All non-diagonal entries are 0s, but
non-zero entries can only be in the main diagonal

• Example: 
3 0 0 0 0

0 6 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 5


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Some special matrices
Upper/lower triangular matrices

• Triangular matrices are common in many applications
• An upper triangular matrix have all 0s below main diagonal. Example:1 4 −2

0 3 0

0 0 5


• An lower triangular matrix have all 0s above main diagonal. Example:1 0 0

1 −2 0

8 7 1


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Symmetric matrices

• Symmetric matrices arise in many applications, including in ML/NLP (e.g.,
similarity or distance matrices)

• A symmetric matrix A satisfies aij = aji, or A = A
T

• Example:  1 4 −2

4 3 0

−2 0 5


• Symmetric matrices have some interesting properties (that we will return

later)
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Matrix–vector multiplication
• An n×m matrix can be multiplied with a m-vector to yield a n-vector

• Example [
2 1 0

1 0 1

]
×

01
0

 =

[
2× 0+ 1× 1+ 0× 1

1× 0+ 0× 1+ 1× 0

]
=

[
1

0

]
• One view of this operation: each entry in the resulting vector is a dot product

(of rows of the matrix and the vector)
• Another: the result is a linear combination of the columns of the matrix (with

the entries in the vector as coefficients)

0×
[
2

1

]
+ 1×

[
1

0

]
+ 0×

[
0

1

]
=

[
1

0

]
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Matrix multiplication as linear transformation

• Multiplying a vector with a matrix transforms the vector
• The result is another vector (possibly in a different vector space)
• Many operations on vectors can be expressed with multiplying with a matrix

(linear transformations)
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Transformation examples
identity

• Identity transformation maps a vector to itself
• For example: [

1 0

0 1

]
×
[
x1
x2

]
=

[
x1
x2

]
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Transformation examples
permutation

• Another simple transformation is to permute (re-arrange) the elements
(rows) of the vector

• For example: 
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

×


x1
x2
x3
x4

 =


x4
x2
x3
x1


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Transformation examples
stretch along the x axis

[
3 0

0 1

]
×
[
1

2

]
=

[
3

2

] (1, 2) (3, 2)
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Transformation examples
rotation

[
cos θ − sin θ
sin θ cos θ

]
[
0 −1

1 0

]
×
[
1

2

]
=

[
−2

1

]

(1, 2)

(−2, 1)
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Transformations by rectangular matrices

• Multiplying a vector with (compatible) rectangular matrix results in a vector
with different dimensionality

• Example R3 → R2 [
2 1 0

1 0 1

]
×

01
0

 =

[
1

0

]
• Example R3 → R4 

2 1 0

1 0 1

0 2 0

1 1 1

×

01
0

 =


1

0

2

1


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Dot product as matrix multiplication
In machine learning (and many other disciplines, we treat an n-vector as n× 1

matrix.
Then, the dot product of two vectors is

uTv

For example, u = (2, 2) and v = (2,−2),[
2 2

]
×
[
2

−2

]

= 2× 2+ 2× − 2 = 4− 4 = 0

• This is a 1× 1 matrix, but matrices and vectors with single entries are often
treated as scalars

Question: What is the transformation performed by dot product?
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Outer product

The outer product of two column vectors is defined as

vuT

[
1

2

]
×
[
1 2 3

]
=

[
1 2 3

2 4 6

]
Note:

• The result is a matrix
• The vectors do not have to be the same length
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Matrix multiplication

• if A is a n× k matrix, and B is a k×m matrix, their product C is a n×m

matrix
• Elements of C, ci,j, are defined as

cij =

k∑
ℓ=0

aiℓbℓj

• Note: ci,j is the dot product of the ith row of A and the jth column of B
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Matrix multiplication
(demonstration)

a11 a12 . . . a1k

a21 a22 . . . a2k

...
... . . . ...

an1 an2 . . . ank



 ×
b11 b12 . . . b1m

b21 b22 . . . b2m

...
... . . . ...

bk1 bk2 . . . bkm





c11 c12 . . . c1m
c21 c22 . . . c2m

...
... . . . ...

cn1 cn2 . . . cnm



=

c11 = a11b11 + a12b21 + . . .a1kbk1

c12 = a11b12 + a12b22 + . . .a1kbk2c1m = a11b1m + a12b2m + . . .a1kbkmc21 = a21b11 + a22b21 + . . .a2kbk1c22 = a21b12 + a22b22 + . . .a2kbk2c2m = a21b1m + a22b2m + . . .a2kbkmcn1 = an1b11 + an2b22 + . . .ankbk1cn2 = an1b12 + an2b22 + . . .ankbk2cnm = an1b1m + an2b2m + . . .ankbkmcij = ai1b1j + ai2b2j + . . .aikbkj
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cij = ai1b1j + ai2b2j + . . .aikbkj
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Properties of matrix multiplication
• Associativity

(AB)C = A(BC)

• Distributivity
A(B+C) = AB+AC

(A+ B)C = AC+ BC

• Multiplication by Identity
IA = AI = A

• Matrix multiplication is not commutative AB ̸= BA (in general)
• Matrix multiplication and transpose

(AB)T = BTAT
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Question

We have three matrices:
• A: a 10× 2 matrix
• B: a 2× 5 matrix
• C: a 5× 10 matrix
• What is the dimensionality of ABC

• Does it matter if we perform the multiplication as

– (AB)C, or
– A(BC)
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Alternative ways to think about matrix multiplication

If we have AB = C,
• Column vectors of C, cj = Abj

• Row vectors of C, cTi = aT
i B

• C is also the sum of outer product of columns of A and rows of B

C =
∑

aib
T
i
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Matrix multiplication example
[
2 1

1 0

]
×
[
1 2

0 1

]
=

[
2 5

1 2

]
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Matrix-vector representation of a set of linear equations

The set of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17

can be written as: [
2 1

1 4

]
︸ ︷︷ ︸

W

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
6

17

]
︸︷︷︸

b

One can solve the above equation using Gaussian elimination (we will not cover it
today).
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Summary & next week

• Vectors, matrices
• Dot product
• Next: solving systems of linear equations
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Further reading
• A classic reference book in the field is Strang (2009)
• Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with

a more practical/graphical orientation.
• Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks

that are freely available.
• Form more alternatives, see

http://www.openculture.com/free-math-textbooks
• You may also find the MIT video lectures on introductory linear algebra at

https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D
Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. ISBN: 9780984417551. URL: http://linear.ups.edu/.

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. URL: https://www.math.ucdavis.edu/~linear/.

Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC Press. ISBN: 978-1-4665-7958-3.

Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman. ISBN: 978-1-4292-1521-3.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 A.1

http://www.openculture.com/free-math-textbooks
https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D
http://linear.ups.edu/
https://www.math.ucdavis.edu/~linear/


Further reading (cont.)

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. ISBN: 9780980232714.
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