
Probability theory
Statistical Natural Language Processing 1

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/2025

version: d9d0678 @2024-12-12

Introduction, definitions Some probability distributions Multivariate distributions Summary

Why probability theory?

But it must be recognized that the notion ’probability of a sentence’ is an entirely
useless one, under any known interpretation of this term. — Chomsky (1968)

Short answer: practice proved otherwise.

Slightly long answer
• Many linguistic phenomena are better explained as tendencies, rather than

fixed rules
• Probability theory captures many characteristics of (human) cognition,

language is not an exception
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What is probability?

Informally,
• Probability is a measure of (un)certainty
• We quantify the probability of an event with a number between 0 and 1

(inclusive)
0 the event is impossible

0.5 the event is as likely to happen as it is not
1 the event is certain
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Some definitions

• A random experiment is an experiment whose outcome cannot be predicted
deterministically

• The set of all possible outcomes of the experiment is called its sample space (Ω)
• Any member of the sample space is called an outcome
• An event (E) is a set of outcomes

Axioms of probability:
1. P(E) ∈ R, P(E) ⩾ 0

2. P(Ω) = 1

3. For disjoint events E1 and E2, P(E1 ∪ E2) = P(E1) + P(E2)
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Example: coin toss

• Random experiment: tossing a coin once
– Outcomes are: either ‘heads’ (H) or ‘tails’ (T)
– Sample space, Ω = {H,T}
– Example events: {H}, {T }, {H} ∪ {T }, {H} ∩ {T }

• Random experiment: tossing a coin twice
– Outcomes are: both heads, both tails, head and tail, tail and head
– Sample space, Ω = {HH, HT, TH, TT}
– Example events:

• Obtaining at least one H
• Obtaining an outcome with no T
• Obtaining at one H and one T
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More examples: balls and urns

• P({ }) = 4/9

• P({ }) = 4/9

• P({ }) = 1/9

• P({ , }) = 8/9

• P({ , , }) = 1

• P({ }) = 16/81

• P({ }) = 16/81

• P({ }) = 4/81

• P({ }) = 1/81

• P({ , }) = 20/81
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Where do probabilities come from

Axioms of probability do not specify how to assign probabilities to events.
Two major (rival) ways of assigning probabilities to events are

• Frequentist (objective) probabilities: probability of an event is its relative
frequency (in the limit)

• Bayesian (subjective) probabilities: probabilities are degrees of belief
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Random variables

• A random variable is a variable whose value is subject to uncertainty
• A random variable as mapping between the outcomes of a trial to real

numbers
• Example outcomes of uncertain experiments

– height or weight of a person
– length of a word randomly chosen from a corpus
– whether an email is spam or not
– the first word of a book, or first word uttered by a baby

Note: not all of these are numbers
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Random variables
mapping outcomes to real numbers

• Continuous
– Frequency of a word randomly picked from a dictionary 59.2, 4013.1, 16431.9 …
– Duration of a word randomly picked from a speech 100.5, 220.3, 431.3 …

• Discrete
– Number of words in a sentence: 2, 5, 10, …
– Whether a review is negative or positive:

Outcome Negative Positive
Value 0.00 1.00

– The POS tag of a word:

Outcome Noun Verb Adj Adv …
Value 1 2 3 4 …
…or 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 …
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Probability mass function
Example: probabilities for sentence length in words

• Probability mass function (PMF) of a discrete random variable (X) maps every
possible (x) value to its probability (P(X = x)).
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1 0.155

2 0.185

3 0.210
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9 0.012

10 0.005
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Populations, distributions, samples
• A probability distribution characterizes a random variable
• We can define a distribution with a vector or table of probabilities, if we have

a finite sample space
• Otherwise, we use (parametric) functions to map the (infinite) set of

outcomes to probabilities
• Probability distributions characterize possibly infinite populations
• In most cases we have to work with samples

A sample from the distribution on the previous slide:
[1, 2, 2, 3, 3, 3, 4, 4, 5, 7, 11]

1
0.0

1.0

2.0

3.0

4.0

2
0.0

1.0

2.0

3.0

4.0

3
0.0

1.0

2.0

3.0

4.0

4
0.0

1.0

2.0

3.0

4.0

5
0.0

1.0

2.0

3.0

4.0

7
0.0

1.0

2.0

3.0

4.0

11
0.0

1.0

2.0

3.0

4.0

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 10 / 59

Introduction, definitions Some probability distributions Multivariate distributions Summary

Probability density function (PDF)

• Continuous variables have
probability density functions

• p(x) is not a probability (note the
notation: we use lowercase p for
PDF)

• Area under p(x) sums to 1.00

• P(X = x) = 0

• Non zero probabilities are possible
for ranges:

P(a ⩽ x ⩽ b) =

∫b
a

p(x)dx

0 1 2
0

0.5

1

a b
x

p(x)
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Cumulative distribution function
• FX(x) = P(X ⩽ x)
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Sentence length

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11

Length Prob. C. Prob.
1 0.16 0.16

2 0.18 0.34

3 0.21 0.55

4 0.19 0.74

5 0.10 0.85

6 0.07 0.91

7 0.04 0.95

8 0.02 0.97

9 0.01 0.99

10 0.01 0.99

11 0.00 1.00
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Expected value
• Expected value (mean) of a random variable X is,

E[X] = µ =

n∑
i=1

P(xi)xi = P(x1)x1 + P(x2)x2 + . . .+ P(xn)xn

• More generally, expected value of a function of X is

E[f(X)] =
∑
x

P(x)f(x)

• Expected value is a measure of central tendency
• Note: it is not the ‘most likely’ value
• Expected value is linear

E[aX+ bY] = aE[X] + bE[Y]
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Variance and standard deviation
• Variance of a random variable X is,

Var(X) = σ2 =

n∑
i=1

P(xi)(xi − µ)2 = E[X2] − (E[X])2

• It is a measure of spread, divergence from the central tendency
• The square root of variance is called standard deviation

σ =

√√√√( n∑
i=1

P(xi)x
2
i

)
− µ2

• Standard deviation is in the same units as the values of the random variable
• Variance is not linear: σ2

X+Y ̸= σ2
X + σ2

Y (neither the σ)
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Example: two distributions with different variances

−6 −4 −2 2 4 6

σ = 0.7

σ = 1.3
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Short divergence: Chebyshev’s inequality

For any probability distribution, and k > 1,

P(|x− µ| > kσ) ⩽ 1

k2

Distance from µ 2σ 3σ 5σ 10σ 100σ

Probability 0.25 0.11 0.04 0.01 0.0001

• This leads to what is called weak law of large numbers: mean of an independent
sample converges to the true mean as the size of the sample is increased
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Median and mode of a random variable

Median is the mid-point of a distribution. Median of a random variable is defined as
the number m that satisfies

P(X ⩽ m) ⩾ 1

2
and P(X ⩾ m) ⩾ 1

2

• Median of 1, 4, 5, 8, 10 is 5
• Median of 1, 4, 5, 7, 8, 10 is 6

Mode is the value that occurs most often in the data.
• Modes appear as peaks in probability mass (or density) functions
• Mode of 1, 4, 4, 8, 10 is 4
• Modes of 1, 4, 4, 8, 9, 9 are 4 and 9
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Mode, median, mean, standard deviation
Visualization on sentence length example
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σ
=
2.
09
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Mode, median, mean
sensitivity to extreme values
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Multimodal distributions

−6 −4 −2 2 4 6

• A distribution is multimodal if it has multiple modes
• Multimodal distributions often indicate confounding variables
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Skew

• Another important property of a probability distribution is its skew
• symmetric distributions have no skew
• positively skewed distributions have a long tail on the right
• negatively skewed distributions have a long left tail

−5 5 0 1 2
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Another example distribution
A probability distribution over letters

• An alphabet with 8 letters and their probabilities of occurrance;
Lett. a b c d e f g h
Prob. 0.23 0.04 0.05 0.08 0.29 0.02 0.07 0.22

Pr
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0.1

0.2

e a h d g c b f
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Probability distributions

• A distribution on a finite set of outcomes can be defined by a vector (or table)
of probabilities

• Some random variables (approximately) follow a distribution that can be
parametrized with a (small) number of parameters

• For example, Gaussian (or normal) distribution is conventionally
parametrized by its mean (µ) and variance (σ2)

• Common notation we use for indicating that a variable X follows a particular
distribution is

X ∼ Normal(µ, σ2) or X ∼ N(µ, σ2).

• For the rest of this lecture, we will revise some of the important probability
distributions
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Probability distributions (cont)

• A probability distribution is called univariate if it was defined on scalars
• multivariate probability distributions are defined on vectors
• Probability distributions are abstract mathematical objects (functions that

map events/outcomes to probabilities)
• A probability distribution is a generative device: it can generate samples
• In most problems, we only have access to a samples
• Learning (or inference) is often cast as finding an (approximate) distribution

from a sample
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Uniform distribution (discrete)

• A uniform distribution assigns equal
probabilities to all values in range
[a, b], where a and b are the
parameters of the distribution

• Probabilities of the values outside
the range are 0

• µ = b+a
2

• σ2 =
(b−a+1)2−1

12

• There is also an analogous
continuous uniform distribution

x ∼ Unif(a, b)

n = b− a+ 1
1
n

…
a b
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Bernoulli distribution
Bernoulli distribution characterizes simple random experiments with two
outcomes

• Coin flip: heads or tails
• Spam detection: spam or not
• Predicting gender: female or male

We denote (arbitrarily) one of the possible values with 1 (often called a success),
the other with 0 (often called a failure)

P(X = 1) = p

P(X = 0) = 1− p

P(X = k) = pk(1− p)1−k

µX = p

σ2
X = p(1− p)
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Binomial distribution

Binomial distribution is a generalization of Bernoulli distribution to n trials, the
value of the random variable is the number of ‘successes’ in the experiment

P(X = k) =

(
n

k

)
pk(1− p)n−k

µX = np

σ2
X = np(1− p)

Remember that
(
n
k

)
= n!

k!(n−k)! .

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/2025 27 / 59

Introduction, definitions Some probability distributions Multivariate distributions Summary

Categorical distribution

• Extension of Bernoulli to k mutually exclusive outcomes
• For any k-way event, the probability distribution is parametrized by k

parameters p1, . . . , pk (k− 1 independent parameters) where

k∑
i=1

pi = 1

E[xi] = pi

Var(xi) = pi(1− pi)

• Similar to Bernoulli–binomial generalization, multinomial distribution is the
generalization of categorical distribution to n trials
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Categorical distribution example
sum of the outcomes from roll of two fair dice

P(x)

x
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2 3 4 5 6 7 8 9 10 11 12
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Beta distribution

• Beta distribution is defined in range [0, 1]
• It is characterized by two parameters α and β

p(x) =
xα−1(1− x)β−1

Γ(α)Γ(β)
Γ(α+β)

0 0.5 1
0

1

2

0 0.5 1
0

1

2
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Beta distribution
where do we use it

• A common use is the random variables whose values are probabilities
• Particularly important in Bayesian methods as a conjugate prior of Bernoulli

and Binomial distributions
• The Dirichlet distribution generalizes Beta distribution to k-dimensional vectors

whose components are in range (0, 1) and ∥x∥1 = 1.
• Dirichlet distribution is used often in NLP, e.g., latent Dirichlet allocation is a

well know method for topic modeling
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Example Dirichlet distributions
θ = (2, 2, 2)
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Example Dirichlet distributions
θ = (0.8, 0.8, 0.8)
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Example Dirichlet distributions
θ = (2, 2, 4)
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Gaussian (normal) distribution

µ

µ
−
σ

µ
+
σ

µ
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2
σ

µ
+
2
σ

p(x) = 1

σ
√
2π

e
−

(x−µ)2

2σ2
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Short detour: central limit theorem

Central limit theorem states that the sum of a large number of independent and
identically distributed variables (i.i.d.) is normally distributed.

• Expected value (average) of means of samples from any distribution will be
distributed normally

• Many (inference) methods in statistics and machine learning work because of
this fact

• This leads to (strong) law of large numbers: as sample size grows, sample mean
converges to true (population) mean
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Student’s t-distribution

• T-distribution is another important
distribution

• It is similar to normal distribution,
but it has heavier tails

• It has one parameter: degree of
freedom (v) −5 5

t(v = 1)

N(µ = 0, σ = 1)
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Joint and marginal probability
Two or more random variables form a joint probability distribution.

An example with letter bigrams:
a b c d e f g h

a 0.04 0.02 0.02 0.03 0.05 0.01 0.02 0.06 0.23

b 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04

c 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05

d 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.08

e 0.06 0.02 0.01 0.03 0.08 0.01 0.01 0.07 0.29

f 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02

g 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.07

h 0.08 0.00 0.00 0.01 0.10 0.00 0.01 0.02 0.22

0.23 0.04 0.05 0.08 0.29 0.02 0.07 0.22
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Expected values of joint distributions

E[f(X, Y)] =
∑
x

∑
y

P(x, y)f(x, y)

µX = E[X] =
∑
x

∑
y

P(x, y)x

µY = E[Y] =
∑
x

∑
y

P(x, y)y

We can simplify the notation by vector notation, for µ = (µx, µy),

µ =
∑

x∈XY

xP(x)

where vector x ranges over all possible combinations of the values of random
variables X and Y.
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Variances of joint distributions

σ2
X =

∑
x

∑
y

P(x, y)(x− µX)
2

σ2
Y =

∑
x

∑
y

P(x, y)(y− µY)
2

σXY =
∑
x

∑
y

P(x, y)(x− µX)(y− µY)

• The last quantity is called covariance which indicates whether the two
variables vary together or not

Again, using vector/matrix notation we can define the covariance matrix (Σ) as

Σ = E[(x− µ)2]
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Covariance and the covariance matrix

Σ =

[
σ2
X σXY

σYX σ2
Y

]

• The main diagonal of the covariance matrix contains the variances of the
individual variables

• Non-diagonal entries are the covariances of the corresponding variables
• Covariance matrix is symmetric (σXY = σYX)
• For a joint distribution of k variables we have a covariance matrix of size k× k
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Correlation

Correlation is a normalized version of covariance

r =
σXY

σXσY

Correlation coefficient (r) takes values between −1 and 1

1 Perfect positive correlation.
(0, 1) positive correlation: x increases as y increases.

0 No correlation, variables are independent.
(−1, 0) negative correlation: x decreases as y increases.

−1 Perfect negative correlation.
Note: like covariance, correlation is a symmetric measure.
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Correlation: visualization (1)
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Correlation: visualization (2)
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Correlation: visualization (3)
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Correlation: visualization (4)
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Correlation: visualization (5)
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Correlation and independence

• Statistical (in)dependence is an important concept (in ML)
• The correlation (or covariance) of independent random variables is 0
• The reverse is not true: 0 correlation does not imply independence
• Correlation measures a linear dependence (relationship) between two

variables, a non-linear dependence is not measured by correlation
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Short divergence: correlation and causation

From Messerli (2012).
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Conditional probability
In our letter bigram example, given that we know that the first letter is e, what is
the probability of second letter being d?

a b c d e f g h
a 0.037 0.015 0.017 0.031 0.046 0.005 0.019 0.062 0.233

b 0.010 0.002 0.004 0.003 0.012 0.001 0.002 0.009 0.042

c 0.017 0.001 0.001 0.002 0.012 0.001 0.001 0.011 0.046

d 0.019 0.002 0.004 0.009 0.016 0.003 0.012 0.019 0.084

e 0.055 0.016 0.014 0.026 0.079 0.009 0.015 0.072 0.286

f 0.004 0.001 0.001 0.002 0.007 0.002 0.001 0.005 0.023

g 0.010 0.002 0.002 0.005 0.020 0.001 0.008 0.018 0.066

h 0.080 0.003 0.004 0.006 0.095 0.002 0.008 0.022 0.219

0.233 0.042 0.046 0.084 0.286 0.023 0.066 0.219

P(L1 = e, L2 = d) = 0.026 P(L1 = e) = 0.286

P(L2 = d | L1 = e) =
P(L1 = e, L2 = d)

P(L1 = e)
= 0.091
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Conditional probability (2)
In terms of probability mass (or density) functions,

P(X | Y) =
P(X, Y)

P(Y)

If two variables are independent, knowing the outcome of one does not affect the
probability of the other variable:

P(X | Y) = P(X) P(X, Y) = P(X)P(Y)

More notes on notation/interpretation:
P(X = x, Y = y) Probability that X = x and Y = y at the same time (joint

probability)
P(Y = y) Probability of Y = y, for any value of X (

∑
x∈X P(X = x, Y = y))

(marginal probability)
P(X = x | Y = y) Probability of X = x, given Y = y (conditional probability)
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Bayes’ rule

P(X | Y) =
P(Y | X)P(X)

P(Y)

• This is a direct result of the axioms of the probability theory
• It is often useful as it ‘inverts’ the conditional probabilities
• The term P(X), is called prior
• The term P(Y | X), is called likelihood
• The term P(X | Y), is called posterior
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Example application of Bayes’ rule

We use a test t to determine whether a patient has COVID-19 (c)
• If a patient has c test is positive 99% of the time: P(t | c) = 0.99

• What is the probability that a patient has c given t?
• …or more correctly, can you calculate this probability?
• We need to know two more quantities. Let’s assume
P(c) = 0.01 and P(t | ¬c)) = 0.1

P(c | t) =
P(t | c)P(c)

P(t)
=

P(t | c)P(c)

P(t | c)P(c) + P(t | ¬c)P(¬c)
= 0.09
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Chain rule
We rewrite the relation between the joint and the conditional probability as

P(x, y) = P(x | y)P(y)

We can also write the same quantity as,

P(x, y) = P(y | x)P(x)

For more than two variables, one can write

P(x, y, z) = P(z | x, y)P(y | x)P(x) = P(x | y, z)P(y | z)P(z) = . . .

In general, for any number of random variables, we can write

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2, . . . , xn)
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Conditional independence
If two events are conditionally independent:

P(x, y | z) = P(x | z)P(y | z)

This is often used for simplifying the statistical models. For example in spam
filtering with naive Bayes classifier, we are interested in

P(w1, w2, w3 | spam) = P(w1 |w2, w3, spam)P(w2 |w3, spam)P(w3 | spam)

with the assumption that occurrences of words are independent of each other
given we know the email is spam or not,

P(w1, w2, w3 | spam) = P(w1 | spam)P(w2 | spam)P(w3 | spam)
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Continuous random variables
some reminders

The rules and quantities we discussed above apply to continuous random
variables with some differences

• For continuous variables, P(X = x) = 0

• We cannot talk about probability of the variable being equal to a single real
number

• But we can define probabilities of ranges
• For all formulas we have seen so far, replace summation with integrals
• Probability of a range:

P(a < X < b) =

∫b
a

p(x)dx
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Multivariate continuous random variables

• Joint probability density

p(X, Y) = p(X | Y)p(Y) = p(Y | X)p(X)

• Marginal probability
P(X) =

∫∞
−∞ p(x, y)dy
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Multivariate Gaussian distribution
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Samples from bi-variate normal distributions
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Summary: some keywords

• Probability, sample space, outcome,
event

• Random variables: discrete and
continuous

• Probability mass function
• Probability density function
• Cumulative distribution function
• Expected value
• Variance / standard deviation
• Median and mode
• Skewness of a distribution

• Joint and marginal probabilities
• Covariance, correlation
• Conditional probability
• Bayes’ rule
• Chain rule
• Some well-known probability

distributions:
Bernoulli binomial
categorical multinomial
beta Dirichlet
Gaussian Student’s t

Recommended reading: Probability theory tutorial by Goldwater (2018)
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Next

• Information theory
• Estimation and regression (again)
• Machine Learning and generalization
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References and further reading
• MacKay (2003) covers most of the topics discussed in a way quite relevant to

machine learning. The complete book is available freely online (see the link
below)

• See Grinstead and Snell (2012) a more conventional introduction to
probability theory. This book is also freely available

• For an influential, but not quite conventional approach, see Jaynes (2007)
Chomsky, Noam (1968). “Quine’s empirical assumptions”. In: Synthese 19.1, pp. 53–68. DOI: 10.1007/BF00568049.

Goldwater, Sharon (2018). Basic probability theory. URL: https://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf.

Grinstead, Charles Miller and James Laurie Snell (2012). Introduction to probability. American Mathematical Society. ISBN: 9780821894149. URL:
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html.

Jaynes, Edwin T (2007). Probability Theory: The Logic of Science. Ed. by G. Larry Bretthorst. Cambridge University Press. ISBN: 978-05-2159-271-0.

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. ISBN: 978-05-2164-298-9. URL:
http://www.inference.phy.cam.ac.uk/itprnn/book.html.

Messerli, Franz H (2012). “Chocolate consumption, cognitive function, and Nobel laureates”. In: The New England journal of medicine 367.16,
pp. 1562–1564.
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