Quick recap

Linear algebra: regression

Sttistical Natural Language Processing 1 o o e revned:

+ Vectors, matrices

Gagn Galtekin + Operations on vectors and matices: scalar multiplication, additon, dot

product, matrix multiplcation
Unrsityo Tibingen o ,
S Syt . s
 Linearity and linear combinations
Winter Semester 20242025  Solving systems ofinear equations, climination

+ Finding matrix inverse

Recap: solutions to systems of linear equations

Foran x mmatrix A

« Square,n =m
Uniquesoluton A full ank n =7
= Otherwi
S oimue o s e o pace ol A

* No solutions thersise
« Rectangular, n < m (wide matrix)
~ Infinite solutions if b is in the column space of A
Nosolutions otherwise
« Rectangular, n > m (tal/thin matrix)
~ Unique solution if b s in the column space of A
- Nosolutions otherise

Linear regression
Linear regresson s about inding a
inear motel of th form,
Yo

where,

+ yisa numeric quantity we want to
predict

« xis a measurement/value helpful

for predicting y

« woand wy are the parameters that
we want to learn from data

« both x and y can be vector valued

Linear regression: and alternative view

hislecture

A simple example

oL
equations without a solution
+ Given a dataset like

x x
25039 521
3218 377
31247 126
200 701

« Find the closest solution to Xw = y

« In other words, we solve Xw = p, wh

to'be solved, and it the closest such vector to y

ere p is a vector that allows the system

« Let's take.
toasystem of . ,
<[ o[l
y + Wewant tosolve,
1319
59.67 v
15042
16627 + Instead we solve,

xw=p

where p s the orthogonal projection
of y onto the line defined by

Finding the projection
« pisascalar muu.ple (Imear

Finding the projection

asightly diffrent explanation

combination) + Note that e =
o ;mgmnynpr.‘ the  Since x and e are orthogonal

normalized dot product xTy/[x|
+ We get the projection, if we multiply N Xy —xw) N

this with the unit vector in x

direction

g oy x Jow x
kT M A ) ) ¢
Tl Tl = ¥ =
« w,in this case is also easy: B
Solution to the simple regression example The other picture of the solution
For our example,
+ Our training gives us 4 T + Themodel: y
=[] =]}
+ Predictons .
B ., N [uz/s]i[s,]

« For future x values, the prediction o cw=s 22/5] ™ |4/5]

For future x values, thepredictionof - 1'%

_— N « Error
. H B [s/s] _ [73/5]
Questions: 2~ |ass] =[5
+ what s the rror e on the training instances? « Isthisa good model?
« whatis ex?

Linear regression in higher dimensions

Deriving linear regression on higher dimensions

N XT(y—p) =0 Error vector is orthogonal to columns
N XT(y—Xw) =0 pis the weighted combination of columns
« nigher dimensioal pces we . Il e
et procion on e coamn XX =Xy Note: X'Xissq
space of X o _,__,_:_,:,__ = (X"X)'XTy The final solution
« The error vector e is perpendicular "‘. =

toall column vectors of
+ Again, note that e =y — p

The projection of y anto columns space of X is
p=XIXTX)'XTy




The intercept (bias) term Solution with the intercept term
+ The models we it o far are ‘linear’

Y= s

they are forced to include y = 0 for x = 0
« In most (almost al) cases, this
intercept term

5 t0o restrictive, we also want to learn an. « Solution: wo =3, wy =~1/2
« The model: y =3 1/2x
- I this a better model?

= W WK1+ WD o W

« A straightforward solution s to include an artficial column of 1s in the input

H

Regression in the real world Summary / next

« In this lecture, we focused on finding the best ft to the data w “ i R
« This may (very likely) result in overfting * We evewedregesion a1 way b fnd an approximatesoluto 3 ystem
+ To prevent overfitting, we RS
= use regularizaton + We will come back to regression maultiple times
never rely on performance on the training set, success should orly be Next
measured on a eld-out data set

« Determinant, eigenvalues eigensectors, SVD
 We will return to these concepts later

Further reading

Any of the linear algebra references provided earlier.
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