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Recap Overview Simple regression Multiple predictors General remarks Summary

Quick recap

So far we reviewed:
• Vectors, matrices
• Operations on vectors and matrices: scalar multiplication, addition, dot

product, matrix multiplication
• Matrices as operators (linear functions / transformations)
• Linearity and linear combinations
• Solving systems of linear equations, elimination
• Finding matrix inverse
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Recap: solutions to systems of linear equations

For a n×m matrix A

• Square, n = m

– Unique solution if A is full rank n = r
– Otherwise,

• Infinite solutions if b is in the column space of A
• No solutions otherwise

• Rectangular, n < m (wide matrix)
– Infinite solutions if b is in the column space of A
– No solutions otherwise

• Rectangular, n > m (tall/thin matrix)
– Unique solution if b is in the column space of A
– No solutions otherwise
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Linear regression
Linear regression is about finding a
linear model of the form,

y = w1x+w0

where,
• y is a numeric quantity we want to

predict
• x is a measurement/value helpful

for predicting y

• w0 and w1 are the parameters that
we want to learn from data

• both x and y can be vector valued
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Linear regression: and alternative view
this lecture

• Linear regression is also about finding the closest solution to a system of
equations without a solution

• Given a dataset like
x1 x2 y

250.39 5.21 4913.19
332.18 3.77 59.67
312.47 1.26 154.42
272.01 7.01 166.27

• Find the closest solution to Xw = y

• In other words, we solve Xw = p, where p is a vector that allows the system
to be solved, and it the closest such vector to y
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A simple example

• Let’s take

x =

[
4

2

]
y =

[
1

2

]

• We want to solve,

xw = y

• Instead we solve,

xw = p

where p is the orthogonal projection
of y onto the line defined by x
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Finding the projection
• p is a scalar multiple (linear

combination) of x: p = xw

• We know that the length of p is the
normalized dot product xTy/∥x∥

• We get the projection, if we multiply
this with the unit vector in x

direction

p =
x

∥x∥
xTy

∥x∥
=

xxT

∥x∥2
y =

xxT

xTx
y

• w, in this case is also easy:

w =
xTy

xTx
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Finding the projection
a slightly different explanation

• Note that e = y− p

• Since x and e are orthogonal

xT (y− xw) = 0

xTy = xTxw

w =
xTy

xTx

• Since we defined p = xw,

p = x
xTy

xTx
=

xxT

xTx
y
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Solution to the simple regression example

• Our ‘training’ gives us

w =
xTy

xTx

• For future x values, the prediction of
y is

y = wx

For our example,

x =

[
4

2

]
y =

[
1

2

]

• w = 2
5

• The model:

y =
2

5
x

Questions:
• what is the error e on the training instances?
• what is eTx?
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The other picture of the solution

• The model: y = 2
5
x

• Predictions:

p =

[
4× 2/5

2× 2/5

]
=

[
8/5

4/5

]
• Error:

e =

[
1

2

]
−

[
8/5

4/5

]
=

[
−3/5

6/5

]
• Is this a good model?

2 4

2

4

(4, 1)

(4, 8/5)
(2, 2)

(2, 4/5)
6/5 -3/5
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Linear regression in higher dimensions

• In higher dimensional spaces we
want the projection onto the column
space of X

• The error vector e is perpendicular
to all column vectors of X, xi

• Again, note that e = y− p
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Deriving linear regression on higher dimensions

XT (y− p) = 0 Error vector is orthogonal to columns
XT (y− Xw) = 0 p is the weighted combination of columns

XTXw = XTy Note: XTX is square
w = (XTX)−1XTy The final solution

The projection of y onto columns space of X is

p = X(XTX)−1XTy
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The intercept (bias) term

• The models we fit so far are ‘linear’,

y = w1x1 +w2x2 + . . .+wmxm

they are forced to include y = 0 for x = 0

• In most (almost all) cases, this is too restrictive, we also want to learn an
intercept term

y = w0 +w1x1 +w2x2 + . . .+wmxm

• A straightforward solution is to include an artificial column of 1s in the input
matrix X

X =

[
1 4

1 2

]
y =

[
1

2

]
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Solution with the intercept term

• Solution: w0 = 3, w1 = −1/2

• The model: y = 3− 1/2x

• Is this a better model?

2 4
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Regression in the real world

• In this lecture, we focused on finding the best fit to the data
• This may (very likely) result in overfitting
• To prevent overfitting, we

– use regularization
– never rely on performance on the training set, success should only be

measured on a held-out data set
• We will return to these concepts later
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Summary / next

• We reviewed regression as a way to find an approximate solution to a system
of linear equations

• We will come back to regression multiple times

Next:
• Determinant, eigenvalues/eigenvectors, SVD
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Further reading

Any of the linear algebra references provided earlier.
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