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Linear regression
Lincar regression is about finding a
linear model of the form,
y=wix+wo
where,
« yis.a numeric quantity we want to
redict
« xis a measurement/value helpful
for predicting y

« wo and wy are the parameters that
we want to learn from data

« both x and y can be vector valued

Linear regression: the linear algebra approach

« We want to find Xw =, but the
System s overdetermined, here s
1o unique solution

00 pambl stk e e
column spact

« The closest vector to y, in
column space of X is the orthog\)nal
projection p

« Theerrore =y~ p

Deriving linear regression with linear algebra

XT(y—pl

0 Error vector s orthogonal to columns

XT(y—Xw) =0 pis the weighted combination of columns.
X'Xw=X"y Note: X'Xis square (and invertible if X has indep. columns)
= (X"X)"XTy  The final solution

‘The projection of y onto columns space of X is

P =Xw = XIXX) 'XTy

imating regre

on parameters
w

+ We view learning as  search for the o
regression equation with leasterror 5
+ The error terms are also called
esiduals
+ We want error o be low for the x
Whols inieg s aerige ox i)
of the error has to be reduced
+ Can we minimize the sum of the

quares regression

In wo and wy val

Elw) = ¥ yi — (wo + wixi)®

« Note that E(w) is a quadmtic function of w = (wg, w1
« Asa result, E(w) is comex and have a single extreme value
- there i unique solution for ous minimization problem.

+ In case of least squares regression, there is an analytic solution

B

i the error
search procedure like gradient descent can stllfind the global minimun

A simple example
clrsluton withnear lgebra

« The data:

0
x=[3] v
We want to solve, xw = y, but not

solvable :
+ Instead we solve, xw = p,

Xy _4x142x2 2 i
XTx Taxd+2x2 5

simple example
optimizaion approsch

cown=[] -
Model: § = wx '
« Squared errors
E(w) = (dw— 112 + (2w—2)*
=200~ 16w +5 —
« Setting the derivaiv to zeror
2 w
B dow—ts=0sw=] R e

A simple example
extending it th bl erm

coum=[l] 3=

Solution with the intercept term

Model:§ = wo +wrx « Gradient
+ Squared errors Ao+ 12wy —6
. L =l h
E(w) = (wo + 4wy — 112 + (wo + 2wy — 2] « Solution: wp =3, wy =—1/2
= 23+ 20w+ 12wawy — 6w — 8wy 5+ Settings VE(w) = « The model: y =3~ 1/2¢
+ Partial derivatives [4 ] [ ] _ [5]
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Regression with multiple predictors Evaluating machine learning systems
o i ik e = e
Wok Witk Wt oot Wit
H
o i the nfercept (as before) + Any system neecds
w1 are the coefficients of the respective predictors. . (or failure) h we need
« is the error term (residual). guantitative measures
 usin the vecor noation the equation becomes:
——
where w = (wo, wi, ..., wic) and x¢ = (1,01, i)
- X il




Measuring su

« Root-mean-square error (RMSE)
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« Another well-known measure is the cocfficient of determination

_Zlw m,\“iyi(RMSr)
Ty - m)? oy

Assessing the model fit: R?
We can express the variation explained by a regression model as

Explained variation _ 31§ — i, )*
Total variation 3"y — py 2

+ In simple regression, it s the square of the correlation coefficient between the
outcome and the predictor

+ The range of R? is (0, 1)

« 100 x R? i interpreted as ‘the percentage of variance explained by the model’

« R% shows how well the model its to the data: closer the data points to the.
regression line, higher the value of R

Explained variation
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Some cautionary notes

tive to autlers,

+ Leastsq
when minimizing squares

« Ttis always a good idea to inspect the data

+ Other (robust) methods (e least

« Other (robust) methods are also available

Summary / next

« We reviewed regression as find

+ We will come back to regression multiple times
Next:
« Probability theory
« Reading; probability theory tutorial by Goldwater (2018)
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